https://www.linkedin.com/feed/update/urn:li:activity:6513633056488857600

Problem 3123.Proposed by Joe Hovard, Portales,NM,USA.

Let *a*, *b*, *c* be the sides of a triangle. Show that
\n
$$
\frac{abc(a+b+c)^2}{a^2+b^2+c^2} \ge 2abc + \prod_{cyclic} (a+b-c).
$$

Solution by Arkady Alt , San Jose ,California, USA.

Let F, S, R, r denote the area, semiperimeter, circumradius and inradius, respectively, of triangle. Using corellations $abc = 4FR$, $ab + bc + ca = s^2 + r^2 + 4Rr$ and $F = rs$ we can to give to the original inequality "more" geometrical form:

$$
\frac{4FR \cdot 4s^2}{a^2 + b^2 + c^2} \ge 8FR + \frac{8F^2}{s} \iff \frac{2Rs^2}{a^2 + b^2 + c^2} \ge R + r \iff \frac{2R}{R+r} \ge \frac{a^2 + b^2 + c^2}{s^2} =
$$

$$
\frac{4s^2 - 2(s^2 + r^2 + 4Rr)}{s^2} \iff \frac{R}{R+r} \le 1 - \frac{r^2 + 4Rr}{s^2} \iff \frac{r^2 + 4Rr}{s^2} \le \frac{r}{R+r} \iff
$$

(1) $s^2 \leq (R+r)(4R+r)$.

So, original inequality equivalent to (1), which immediatelly follows from Gerretsen's inequality $s^2 \le 4R^2 + 4Rr + 3r^2$ and Eyler's inequality $2r \le R$. Really, $(R + r)(4R + r) - (4R^2 + 4Rr + 3r^2) = Rr - 2r^2 = r(R - 2r) \ge 0.$

Remark. Another solution in CRUX vol.33.n.2

Problem 3125.Proposed by Walther Janous, Ursulinengymnasium,Insbruck, Austria.(Solutions in CRUX vol.33.n.3 and nobody solved c^*))

Let $m_a h_a$ and w_a denote the lengths of the median, the altitude, and the internal angle bisector, respectively to side a in $\triangle ABC$.

(a) Show that

$$
\sum_{\text{cyclic}} \frac{b^2 + c^2}{m_a} \le 12R.
$$
\n**(b)**
$$
\sum_{\text{cyclic}} \frac{b^2 + c^2}{h_a} \ge 12R.
$$

cyclic
$$
n_a
$$

(c) \star Determine the range of

$$
\frac{1}{R}\sum_{cyclic}\frac{b^2+c^2}{w_a}.
$$

Solution by Arkady Alt , San Jose ,California, USA.

(a) Let R and d_a be distance, respectively, circumradius and distance from the circumcenter to side a. Then by triangle inequality $m_a \leq R + d_a$ and, since

$$
d_a = \sqrt{R^2 - \frac{a^2}{4}} \text{ then we obtain:}
$$
\n
$$
m_a - R \le \sqrt{R^2 - \frac{a^2}{4}} \iff m_a^2 - 2m_a R + R^2 \le R^2 - \frac{a^2}{4} \iff
$$
\n
$$
4m_a^2 - 8m_a R + a^2 \le 0 \iff 2(b^2 + c^2) - a^2 - 8m_a R + a^2 \le 0 \iff b^2 + c^2 \le 4m_a R \iff
$$
\n(1)
$$
\frac{b^2 + c^2}{m_a} \le 4R.
$$
\nHence,
$$
\sum_{\text{cyclic}} \frac{b^2 + c^2}{m_a} \le \sum_{\text{cyclic}} 4R = 12R.
$$
\n(b) Let *F* be area of triangle $\triangle ABC$. Since $4FR = abc$ and
$$
\sum_{\text{cyclic}} a(b^2 + c^2) =
$$

$$
(a+b+c)(ab+bc+ca) - 3abc, \text{ then } \sum_{\text{cyclic}} \frac{b^2+c^2}{h_a} \ge 12R \iff
$$
\n
$$
\sum_{\text{cyclic}} \frac{a(b^2+c^2)}{2F} \ge 12R \iff \sum_{\text{cyclic}} a(b^2+c^2) \ge 6abc \iff
$$
\n
$$
(a+b+c)(ab+bc+ca) \ge 9abc,
$$
\nwhere latter inequality follows from $a+b+c \ge 3\sqrt[3]{abc}$ and

 $ab + bc + ca \geq 3\sqrt[3]{a^2b^2c^2}$.

Remark. Another solutions to a and b in CRUX vol.33.n.3 and c* remains usolved.